A Method of Genetic Algorithm (GA) for FIR Filter Construction: Design and Development with Newer Approaches in Neural Network Platform

نویسندگان

  • Ajoy Kumar Dey
  • Susmita Saha
  • Avijit Saha
  • Shibani Ghosh
چکیده

The main focus of this paper is to describe a developed and dynamic method of designing finite impulse response filters with automatic, rapid and less computational complexity by an efficient Genetic approach. To obtain such efficiency, specific filter coefficient coding scheme has been studied and implemented. The algorithm generates a population of genomes that represents the filter coefficient where new genomes are generated by crossover, mutation operations methods. Our proposed genetic technique has able to give better result compare to other method. Keywords-Genetic Algorithm; FIR: filter design; optimization; neural network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hardness Optimization for Al6061-MWCNT Nanocomposite Prepared by Mechanical Alloying Using Artificial Neural Networks and Genetic Algorithm

Among artificial intelligence approaches, artificial neural networks (ANNs) and genetic algorithm (GA) are widely applied for modification of materials property in engineering science in large scale modeling. In this work artificial neural network (ANN) and genetic algorithm (GA) were applied to find the optimal conditions for achieving the maximum hardness of Al6061 reinforced by multiwall car...

متن کامل

Predicting air pollution in Tehran: Genetic algorithm and back propagation neural network

Suspended particles have deleterious effects on human health and one of the reasons why Tehran is effected is its geographically location of air pollution. One of the most important ways to reduce air pollution is to predict the concentration of pollutants. This paper proposed a hybrid method to predict the air pollution in Tehran based on particulate matter less than 10 microns (PM10), and the...

متن کامل

Comparison of Trial and Error and Genetic Algorithm in Neural Network Development for Estimating Farinograph Properties of Wheat-flour Dough

Background and Objectives: Rheological characteristics of dough are important for achieving useful information about raw-material quality, dough behavior during mechanical handling, and textural characteristics of products. Our purpose in the present research is to apply soft computation tools for predicting the rheological properties of dough out of simple measurable factors. Materials and Me...

متن کامل

Application of Artificial Neural Network and Genetic Algorithm for Predicting three Important Parameters in Bakery Industries

Farinograph is the most frequently used equipment for empirical rheological measurements of dough. It’suseful to illustrate quality of flour, behavior of dough during mechanical handling and texturalcharacteristics of finished products. The percentage of water absorption and the development time of doughare the most important parameters of farinography for bakery industries during production. H...

متن کامل

Predicting Shear Capacity of Panel Zone Using Neural Network and Genetic Algorithm

Investigating the behavior of the box-shaped column panel zone has been one of the major concerns of scientists in the field.  In the American Institute of Steel Construction the shear capacity of I-shaped cross- sections with low column thickness is calculated. This paper determines the shear capacity of panel zone in steel columns with box-shaped cross-sections by using artificial neural netw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011